
International Journal of Theoretical Physics, Vol. 39, No. 2, 2000

Eigenvalue and Eigenfunction of n-Mode Boson
Quadratic Hamiltonian

Lu Huaixin1,2 and Zhang Yongde2

Received June 8, 1999

By means of the linear quantum transformation (LQT) theory, a concise
diagonalization approach for the n-mode boson quadratic Hamiltonian is given,
and a general method to calculate the wave function is proposed.

1. INTRODUCTION

It is well known that in quantum statistics one can obtain the exact
solution of the Hamiltonian only for a few simple systems because the general
systems have a complicated Hamiltonian with multimode coupling. Generally
speaking, it is quite difficult find to analytically the exact solution for a
complicated Hamiltonian. The usual approach is to approximate this compli-
cated Hamiltonian by a quadratic Hamiltonian using, e.g., the mean-field
approximation, the random-phase approximation, or the Hatree–Fock approx-
imation. Therefore, it is of fundamental and practical significance to find
exact solutions for systems of quadratic Hamiltonians.

However, to the best of our knowledge, for a general multimode boson
quadratic Hamiltonian, only the energy spectrum has been calculated analyti-
cally [1, 2], and the methods of diagonalization are quite complicated and
lengthy; no one has given a general method to calculate the wave function
for this system. In this paper, with the aid of linear quantum transformation
(LQT) theory [3–9], we give a detailed solution including the energy spectrum
and wave function.
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2. EIGENVALUE

Consider a general n-mode boson quadratic system whose Hamilto-
nian reads

Ĥ 5 a+ aa 1
1
2

a+gã+ 1
1
2

ãg+a 5
1
2

LN SS L̃ 2
1
2

tr a (1)

where a is an n 3 n Hermitian matrix, g is an n 3 n complex symmetry matrix.

N 5 1a 2g
g* 2ã2

is a “negative Hermitian” matrix [4] (N 2 5 N ), and L 5 (a+, ã), a+ 5
(a1

1 , a1
2 , . . . , a1

n ), and ã 5 (a1, a2, . . . , an), where a1
i and ai are, respectively,

ith boson creation and annihilation operators in n-mode Fock space, and the
operator L satisfies the commutation relation [L̃i , Lj] 5 ((21

B )ij , (B 5
(0
I

2I
0 ).
Consider the following quantum transformation:

L8 5 U 21LU 5 LM 5 L1U V*
V U*2 (2)

where M P C 2n32n and it should obey the following sympletic relation [8]:

M(BM̃ 5 (B (3)

If the operator U is the unitary operator, the matrix M is the “negative unitary”
matrix [4] (M2 5 M21). Because of Eq. (3), the commutation relation will
be automatically preserved after the transformation, i.e., [L̃8i , L8

j
] 5 ((21

B )ij.
From Eq. (2), we have

L 5 L8M 21 (4)

Substituting Eq. (4) into Eq. (1) and noting Eq. (3), we can rewrite the
Hamiltonian as

Ĥ 5
1
2

L8M 21 N(BM̃21L̃8 2
1
2

tr a 5
1
2

L8M 21NM (BL̃8 2
1
2

tr a (5)

It can be verified that if the 2n 3 2n “negative Hermitian” matrix N is
positive-definite, the matrix N can be diagonalized by the “negative unitary”
matrix M (see Appendix), i.e.,



n-Mode Boson Quadratic Hamilton 449

M 21NM 5 1V 0
0 2V2, V 5 1

l1 0
l2

???
0 ln

2 (6)

where li . 0 (i 5 1, 2, . . . , n) and can be calculated from the following
equation:

det1a 2 l 2g
g* 2ã 2 l2 5 0

Thus we obtain the diagonalized Hamiltonian, its energy spectrum, and
eigenstates in quasiparticle representation:

H̃ 5 o
n

i51
ll1a81

i a8i 1
1
22 2

1
2

tr a (7)

En1,n2,...,nn 5 o
n

i51
li1nl 1

1
22 2

1
2

tr a (8)

.n&8 5 .n1, n2, . . . , nn&8 5 &
n

i51

(a81
i )ni

!ni!
.0&8 (9)

3. EIGENFUNCTION

Now let us calculate the eigenfunction of the Hamiltonian,

Cn1,n2, . . . , nn (q) 5 ^q.n& 5 ^q.U 21.n&8 (10)

where U is the unitary operator of transformation, and the antinormal order
product of U21 can be calculated from refs. 7 and 8:

U 21 5 [det U*]21/2 1

1
expH1

2
L1 V*U*21 1 2 U 121

1 2 U*21 2ṼU 121 2L̃J1

1
(11)

where the 1
1 . . . 1

1 denotes the antinormal order product, while .q& 5 .q1, q2,
. . . , qn& is the eigenstate in the coordinate representation:

^q. 5 ^0.p2n/4 expF2
q̃q
2

2
ãa
2

1 !2ãqG (12)

By Eq. (10) of ref. 10, substituting the Eqs. (9), (11), and (12) into Eq.
(10), we can immediately write the C(q) as follows:
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C(q) 5 p2n/4 exp12
q̃q
2 2FdetU* ? det1 U*

21
1 1 ṼU 121

2U 121
V + U 121 2G

21/2

3 &
n

i51

1

!nl! 1
d

dbl2
ni

expH1
2

(b̃, b̃8)12U 121
V + U 121

U*
21

1 1 ṼU 1212
21

1b
b82J

b50

(13)

where b8 5 !2q, q̃ 5 (q1, q2, . . . , qn).
Using the sympletic relation (3) and the formula [2]

1A B
C D2

21

5 1 (A 2 BD21 C )21 2(A 2 BD21C )21BD21

2(D 2 CA21B)21 CA21 (D 2 CA21 B)21 2
det1A B

C D2 5 det A ? det(D 2 CA21B)

where A, B, C, and D are n 3 n matrices, we can derive

12U 121
V + U 121

U*
21

1 1 ṼU 1212
21

5 12A1 A2

Ã2 A32 (14)

where

A1 5 U*[V* 1 (U + 1 Ṽ)21]21 5 Ã1

A2 5 (V + 1 Ũ)21

A3 5 U + [U + 1 Ṽ 1 V*
21

)]21 5 Ã3
6 (15)

det1 U*
21

1 1 ṼU 121

2U 121
V + U 121 25 (detU*

21
)2 ? det[1 1 (V +U* 1 V +V )] (16)

Using Eq. (14), we have

expH1
2

(b̃, b̃8)12U 121
V + U 121

U*
21

1 1 ṼU 1212
21

1b
b82J

5 expH1
2

(b̃, b̃8)12A1 A2

Ã2 A32
21

1b
b82J

5 exp11
2

b̃8A3b82 ? exp11
2

b̃D̃Db82 ? expF2o
i

(ai 2 di)2G (17)



n-Mode Boson Quadratic Hamilton 451

where

D̃ 5 Ã2 ? A21/2
1 , ai 5

1

!2 o
k

bk(A1/2
1 )ki, di 5 o

j
qj D̃ji (18)

Note

&
n

i
dai 5

1

!2
!det Ai &

n

i
dbi (19)

Substituting Eqs. (16), (17), and (19) into Eq. (13), we have

C(q) 5 p2n/4 exp12
q̃q
2 2 H det U*

det[1 1 (V +U* 1 V +V )]J
1/2

3&
n

i51
(2nini!)21/2 (det A1)ni/2 exp11

2
b̃8A3b82

3 exp11
2

b̃8D̃Db821 d
dai

2
niHexpF2o

i
(ai 2 di)2GJ

a50

(20)

Using the formula

1 d
dx2

n

e2x2
5 (21)n e2x2

Hn(x)

we can get the eigenfunction as follows:

C(q) 5 H det U*
det[1 1 (V +U* 1 V +V )]J

1/2

&
n

i
[2nini! p2n/2(det Ai)2ni]21/2

3 expF2q̃12A3 1
1
22qJHni1ok

qk(A2A21/2
1 )ki2

5 H det U*
det[1 1 (V +U* 1 V +V ]J

1/2

&
n

i
[2nini! p2n/2(det A1)2ni]21/2

3 expHFo
k

qk(A1/2
3 )kiG2

2
1
2

q2J 3 Hni1ok
qk(A2A21/2

1 )ki2 (21)

In summary, as discussed above, we clearly see that this approach of
calculating the eigenfunction is general. We point out that, for a general n-
mode boson quadratic Hamiltonian, other methods to calculate the eigenfunc-
tion are quite complicated and lengthy.
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APPENDIX

Theorem. If a negative Hermitian matrix N is positive-definite, one can
find a negative unitary matrix M to diagonalize it to the following form

M 21 NM 5 1V 0
0 2V2, V 5 1

l1 0
l2

???
0 lh

2 (A1)

Proof. From ref. 8, we know that if the 2n 3 2n negative Hermitian
matrix N is positive-definite, then it will not have any zero root, and all of
the 2n characteristic roots li are real and make up n pairs 6 li (i 5 1, 2,
. . . , n). The corresponding eigenvectors are {.ai&,.bi&}, where

N.a& 5 l.a&, N.b& 5 2l.b& (A2)

and satisfy the following orthogonal relations:

^al8.(.al& 5 dll8, ^bl.(.bl8& 5 2dll8 (A3)

^al8.(.bl& 5 0, ( 5 1I 0
0 2I2

We can construct the M in the following way:

M 5 (.a1&, .a2&, . . . , .an&; .b1, .b2&, . . . , .bn&) (A4)

and its inverse matrix reads

M 21 5 (1
^a1.
^a2.

???
^an.
^b1.
^b2.

???
^bn.
2 ( 5 ( M + ( 5 M 2 (A5)

Obviously, the above matrix M is a “negative unitary” matrix. From Eqs.
(A4) and (A2), it is easy to show that
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M 21 NM 5 1
l1

l2 0
???

ln

2l1

0 ???
2ln

2 5 1V 0
0 2V2

(A6)

If we denote

.al& 5 1Xl

Yl
2, .bl& 5 1Y*l

X*l 2, ^al. 5 (X1
l , Y1

l ), ^bl. 5 (Ỹl , X̃l)

where

Xl 5 1
x(l)

1

x(l)
2

???
x(l)

n
2, Yl 5 1

y(l)
1

y(l)
2

???
y(l)

n
2

we can rewrite the matrix M as

M 5 1X Y*
Y X*2 (A7)

Furthermore, we can verify that this matrix M satisfies the sympletic condition
(5). On one hand, from Eq. (A7) we have

M̃ (B M 5 1 X̃Y 2 ỸX X̃X* 2 ỸY*
Y+Y 2 X+X Y+X* 2 X+Y*2 (A8)

On the other hand, from Eq. (A3) we have

(X+, Y+)11 0
0 212 1X

Y2 5 X+X 2 Y+Y 5 1, (A9)

(Ỹ, X̃)11 0
0 22 1X

Y2 5 ỸX 2 X̃Y 5 0

Substituting Eq. (A9) into Eq. (A8), we get the sympletic relation (3).
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